# 中性子星は 我々に何を語りかけているのか?



# "体型"

- ・質量~(1-2)M<sub>☉</sub>
- ・半径~10km
- •表面重力 ~10<sup>11</sup>x地表
- ・温度~10<sup>9</sup>-10<sup>6</sup>K
- •表面磁場 ~10<sup>6</sup>-10<sup>15</sup>G



初田哲男 iTHES研究推進グループ 理化学研究所

# "体内"

- 原子核
- ・中性子と陽子
- π中間子, K中間子
- ・ハイペロン
- ・クォーク (u,d,s) + レプトン

### <u>中性子星の中心を大阪城に置くと</u>





<u>素粒子の標準理論</u>



# <u>Plan of this Talk</u>

- 1. 中性子星の基礎
- 2. 中性子星の質量
- 3. 中性子星の冷却
- 4. 中性子星の磁場
- 5. 格子ゲージ理論と中性子星
- 6. まとめと展望

# <u>Plan of this Talk</u>

- 1. 中性子星の基礎
- 2. 中性子星の質量
- 3. 中性子星の冷却
- 4. 中性子星の磁場
- 5. 格子ゲージ理論と中性子星
- 6. まとめと展望

1932 中性子の発見 J. Chardwick

### 1934 中性子星の予言 W. Baade and F. Zwicky

We have tentatively suggested that the super-nova process represents the transition of an ordinary star into a neutron star.

- 1968 パルサーの発見 S. J. Bell and A. Hewish
- 1974 連星中性子星の発見 R.A. Hulse and J.H. Taylor
- 1979 SGR(マグネター?)の発見
- 1982 ミリ秒パルサーの発見 D. Backer et al.
- 2010 大質量中性子星の発見 P. Detmorest et al.
- 2010 CAS-A中性子星冷却曲線 C.O.Heinke and W.C.G.Ho

(201X 中性子星合体からの重力波発見)











Lattimer and Prakash, arXiv:1012.3208 [astro-ph.SR]

# 中性子星構造の基本方程式

# 1. Tolman-Oppenheimer-Volkoff 方程式 ← 一般相対論

(TOV)

$$\frac{d\mathcal{M}(r)}{dr} = 4\pi r^2 \varepsilon(r),$$
  
$$-\frac{dP(r)}{dr} = \frac{G\varepsilon\mathcal{M}}{r^2} \left(1 - \frac{2G\mathcal{M}}{r}\right)^{-1} \left(1 + \frac{P}{\varepsilon}\right) \left(1 + \frac{4\pi r^3 P}{\mathcal{M}}\right),$$

# 2. 状態方程式 P=P(ε) ← 強い相互作用 (EOS) 電磁相互作用(電荷中性条件) 弱い相互作用(β平衡条件)







# "質量(M)と半径(R)関係"の模式図



From Yagi, Miake and Hatsuda,

"Quark-Gluon Plasma", Cambridge Univ. Press (2008)

# 中性子星内部の諸相

- 原子核
   原子核パスタ
- ・中性子と陽子
   超流動, 超伝導
- π中間子, K中間子
   ボース・アインシュタイン凝縮
- ・ハイペロン

超流動

クォーク (u,d,s)
 カラー超伝導





# 観測の進歩

### 現在:

 $M=(1.97\pm0.04)M_{\odot}$  $M=(2.01\pm0.04)M_{\odot}$ 

X線バースト CAS-A冷却 マグネター





将来:

合体からの重力波 星振学

⇔ 熱いEOS⇔ クラスト構造

Cassiopeia A Cooling, 4% decrease in 9 years (Heinke & Ho, ApJ 2010)







Magnetars (from Enoto, 2012) Bs=3.2x10<sup>19</sup>V(PPdot) [G]



# <u>Plan of this Talk</u>

- 1. 中性子星の基礎
- 2. 中性子星の質量
- 3. 中性子星の冷却
- 4. 中性子星の磁場
- 5. 格子ゲージ理論と中性子星
- 6. まとめと展望









Magnetars (from Enoto, 2012) Bs=3.2x10<sup>19</sup>V(PPdot) [G]







Lattimer and Prakash, arXiv:1012.3208 [astro-ph.SR] 高密度状態方程式と核力(中性子・陽子のみの場合)



核力の斥力芯

#### Phys. Rev. 81 (1951) 165

#### On the Nucleon-Nucleon Interaction\*

ROBERT JASTROW\*\* Institute for Advanced Study, Princeton, New Jersey (Received August 18, 1950)

A charge-independent interaction between nucleons is assumed, which is characterized by a short range repulsion interior to an attractive well. It is shown that it is then possible to account for the qualitative features of currently known n-p and p-p scattering data. Some of the implications for saturation are discussed.

![](_page_16_Picture_5.jpeg)

![](_page_16_Picture_6.jpeg)

### Phys. Rev. 106 (1957) 1366

### Possible Existence of a Heavy Neutral Meson\*

YOICHIRO NAMBU

The Enrico Fermi Institute for Nuclear Studies, The University of Chicago, Chicago, Illinois (Received April 25, 1957)

 $\rho^0$  would contribute a repulsive nuclear force of Wigner type and short range ( $\leq 0.7 \times 10^{-13}$  cm), more or less similar to the phenomenological hard core.

### ω-meson

### 高密度状態方程式と核力 (中性子・陽子のみの場合)

![](_page_17_Figure_1.jpeg)

![](_page_17_Picture_2.jpeg)

### ハイペロン問題 (高塚問題)

![](_page_18_Figure_1.jpeg)

![](_page_18_Picture_2.jpeg)

μ<sub>e</sub>

μΛ

強相関クォークコアへの クロスオーバー?

### Masuda, Hatsuda & Takatsuka, Astrophysical Journal Letters 764 (2013) 12

![](_page_19_Figure_2.jpeg)

![](_page_19_Figure_3.jpeg)

![](_page_20_Picture_0.jpeg)

### LIGO: 2015 ~ esign sensitivity: 2017 ~

VIRGO:2016

Design sensitivity: 20

![](_page_20_Picture_2.jpeg)

Vacuum Duct

Design s

Beam Splitter

Laser

3-4 km

Fabry-Perot **Optical** cavity

enstuvity

Photodetector

# 中性子星合体時の重力波 → EOS

![](_page_21_Figure_1.jpeg)

Sekiguchi, Kiuchi, Kyutoku & Shiata, PRL 107 (2011); PTEP (2013)

![](_page_21_Picture_3.jpeg)

1pc=3.26光年 100Mpc=3.26億光年

わが銀河の直径 30Kpc=10万光年

アンドロメダ銀河まで0.78Mpc=254万光年

# クラストにおける原子核パスタ 星振学とクラスト状態方程式

![](_page_22_Picture_1.jpeg)

### Quantum Molecular Dynamics (Maruyama et al., PTEP 2012)

![](_page_22_Figure_3.jpeg)

### Relativistic MFT (Okamoto et al., PLB 2012)

![](_page_22_Figure_5.jpeg)

Sotani, Nakazato, Iida & Oyamatsu, PRL (2012)

# クラストにおける原子核パスタ 星振学とクラスト状態方程式

OUTER CORE Pree neutrons, protons and electrons Nuclei, electrons and ri Pasta nuclei CRUST

### Quantum Molecular Dynamics (Maruyama et al., PTEP 2012)

![](_page_23_Figure_3.jpeg)

### Relativistic MFT (Okamoto et al., PLB 2012)

# <u>Plan of this Talk</u>

- 1. 中性子星の基礎
- 2. 中性子星の質量
- 3. 中性子星の冷却
- 4. 中性子星の磁場
- 5. 格子ゲージ理論と中性子星
- 6. まとめと展望

Cassiopeia A Cooling, 4% decrease in 9 years (Heinke & Ho, ApJ 2010)

![](_page_25_Figure_1.jpeg)

![](_page_25_Figure_2.jpeg)

#### PSR J1614-2230 , 1.97(4) $M_{\odot}$ , (Demorest et al., Nature 2010)

 $\begin{array}{c} 30 \\ 20 \\ 10 \\ 0 \\ -10 \\ -20 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30 \\ -30$ 

Magnetars (from Enoto, 2012) Bs=3.2x10<sup>19</sup>V(PPdot) [G]

![](_page_25_Figure_6.jpeg)

![](_page_26_Figure_0.jpeg)

![](_page_26_Figure_1.jpeg)

e<sup>-</sup>

| Name                         | Process                                                        | Emissivity                                                                    |        |
|------------------------------|----------------------------------------------------------------|-------------------------------------------------------------------------------|--------|
|                              |                                                                | $({\rm erg}~{\rm cm}^{-3}~{\rm s}^{-1})$                                      |        |
| Modified Urca                | $  n+n \rightarrow n+p+e^-+\overline{v}_e$                     | $\sim 2 \times 10^{21} R T_9^8$                                               | Slow   |
| (neutron branch)             | $n + p + e^- \rightarrow n + n + v_e$                          |                                                                               | 510 W  |
| Modified Urca                | $  p + n \rightarrow p + p + e^- + \overline{v_e}$             | $\sim 10^{21} P T^8$                                                          | Slow   |
| (proton branch)              | $p + p + e^- \rightarrow p + n + v_e$                          | $\sim 10$ $M_{9}$                                                             | SIOW   |
|                              | $n + n \rightarrow n + n + v + \overline{v}$                   |                                                                               |        |
| Bremsstrahlungs              | $n + p \rightarrow n + p + v + \overline{v}$                   | $\sim 10^{19}RT_9^8$                                                          | Slow   |
|                              | $p + p \rightarrow p + p + v + \overline{v}$                   |                                                                               |        |
| Cooper pair                  | $n + n \rightarrow [nn] + v + \overline{v}$                    | $\sim 5 \times 10^{21} R T_9^7$ Medium $\sim 5 \times 10^{19} R T_9^7$ Medium | Modium |
|                              | $p + p \rightarrow [pp] + v + \overline{v}$                    |                                                                               | Medium |
| Direct Urca                  | $n \rightarrow p + e^- + \overline{v}_e$                       | $10^{27} P T^6$                                                               | Fast   |
| (nucleons)                   | $p + e^- \rightarrow n + v_e$                                  | $\sim 10$ KI <sub>9</sub>                                                     | rasi   |
| Direct Urca                  | $\Lambda \rightarrow p + e^- + \overline{v}_e$                 | $\sim 10^{27}  R  T_9^6$                                                      | Fast   |
| $(\Lambda \text{ hyperons})$ | $p + e^- \rightarrow \Lambda + v_e$                            |                                                                               |        |
| Direct Urca                  | $\Sigma^- \rightarrow n + e^- + \overline{\nu}_e$              | $\sim 10^{27}  R  T_9^6$                                                      | Fast   |
| $(\Sigma^{-} hyperons)$      | $n + e^- \rightarrow \Sigma^- + \nu_e$                         |                                                                               |        |
| $\pi^-$ condensate           | $n + < \pi^- > \rightarrow n + e^- + \overline{v}_e$           | $\sim 10^{26}RT_9^6$                                                          | Fast   |
| $K^-$ condensate             | $n + \langle K^- \rangle \rightarrow n + e^- + \overline{v}_e$ | $\sim 10^{25}  R  T_9^6$                                                      | Fast   |
| Direct Urca cycle            | $d \rightarrow u + e^- + \overline{v_e}$                       | $\sim 10^{27} R T_9^6$                                                        | Fast   |
| (u-d quarks)                 | $u + e^- \rightarrow d + v_e$                                  |                                                                               | 1 dot  |
| Direct Urca cycle            | $s \rightarrow u + e^- + \overline{v}_e$                       | $\sim 10^{27}RT_{9}^{6}$                                                      | Fast   |
| (u-s quarks)                 | $u + e^- \rightarrow s + v_e$                                  |                                                                               | 1 451  |

### Cassiopeia A cooling (9 years CHANDRA data)

### Onset of <sup>3</sup>P<sub>2</sub> superfluidity ?

Heike & Ho, ApJ Lett. 719 (2010) L167 Shternin et al., Mon. Not. Astr. Soc. (2010) Page et al., PRL (2011)

### Siimple thermal relaxation ?

Heike & Ho, ApJ Lett. 719 (2010) L167 Tsuruta et al (2012)

![](_page_28_Figure_5.jpeg)

![](_page_28_Figure_6.jpeg)

![](_page_28_Figure_7.jpeg)

# CAS-A 冷却曲線と内部構造: <sup>3</sup>P<sub>2</sub>超流動と関連?

![](_page_29_Figure_1.jpeg)

高密度クォーク物質でのカラー超伝導  

$$\begin{pmatrix} (d_L)_{ia} \sim \epsilon_{ijk} \epsilon_{abc} (q_L)_b^j C(q_L)_c^k \\ (d_R)_{ia} \sim \epsilon_{ijk} \epsilon_{abc} (q_R)_b^j C(q_R)_c^k \\ (d_R)_{ia} \sim \epsilon_{ijk} \epsilon_{abc} (q_R)_b^j C(q_R)_c^k \\ (favor color ) \end{pmatrix}$$

![](_page_30_Figure_1.jpeg)

See the review, K. Fukushima and T. Hatsuda, Rep. Prog. Phys. 74 (2011) 014001

高密度クォーク物質でのカラー超伝導

![](_page_31_Figure_1.jpeg)

![](_page_31_Figure_2.jpeg)

See the review, K. Fukushima and T. Hatsuda, Rep. Prog. Phys. 74 (2011) 014001

![](_page_32_Figure_0.jpeg)

### Cipriani, Vinci & Nitta, PRD86 (2012)

A second

# <u>Plan of this Talk</u>

- 1. 中性子星の基礎
- 2. 中性子星の質量
- 3. 中性子星の冷却
- 4. 中性子星の磁場
- 5. 格子ゲージ理論と中性子星
- 6. まとめと展望

![](_page_34_Figure_0.jpeg)

![](_page_34_Figure_1.jpeg)

![](_page_34_Figure_2.jpeg)

![](_page_34_Figure_3.jpeg)

Magnetars (from Enoto, 2012) Bs=3.2x10<sup>19</sup>√(PPdot) [G]

![](_page_34_Figure_5.jpeg)

T, B, M

![](_page_35_Figure_0.jpeg)

### 強い相互作用が起源?

・中性子物質の強磁性

![](_page_35_Figure_3.jpeg)

### ・クォークコアの強磁性

Tatsumi, Phys. Lett. B489 (2000); arXiv:1107.0807 [hep-ph]].

### π中間子ドメインウォールによる強磁性 Eto, Hashimoto & Hatsuda, PRD88 (2013)

![](_page_35_Figure_7.jpeg)

![](_page_36_Figure_0.jpeg)

Eto, Hashimoto & Hatsuda, PRD88 (2013)

# <u>Plan of this Talk</u>

- 1. 中性子星の基礎
- 2. 中性子星の質量
- 3. 中性子星の冷却
- 4. 中性子星の磁場
- 5. 格子ゲージ理論と中性子星
- 6. まとめと展望

![](_page_38_Picture_0.jpeg)

1973 格子ゲージ理論

![](_page_38_Picture_1.jpeg)

Y. Nambu K. Wilson

![](_page_38_Figure_3.jpeg)

(K. Wilson)

![](_page_38_Figure_4.jpeg)

クォークから中性子星へ

![](_page_39_Figure_1.jpeg)

### 格子QCDによる第一原理計算による核力

Ishii, Aoki & Hatsuda, Phys. Rev. Lett. 92 (2007) 022001 Ishii et al., [HAL QCD Coll.], Phys. Lett. 712 (2012) 437

<sup>1</sup>S<sub>0</sub> NN ポテンシャル (格子QCD計算)

![](_page_40_Picture_2.jpeg)

![](_page_40_Figure_3.jpeg)

m<sub>π</sub>(現在) ~450MeVでの核力 → m<sub>π</sub>(数年後)=135 MeVでの核力

### 格子QCD核力を用いた高密度状態方程式 (LQCD + BHF) (NN force: <sup>1</sup>S<sub>0</sub>, <sup>3</sup>S<sub>1</sub>, <sup>3</sup>D<sub>1</sub> channels only)

### HAL QCD Coll., Phys. Rev. Lett. 111 (2013) 112503

![](_page_41_Picture_2.jpeg)

![](_page_41_Figure_3.jpeg)

![](_page_41_Figure_4.jpeg)

### 格子QCD計算結果に基づく中性子星

![](_page_42_Figure_1.jpeg)

HAL QCD Coll., Phys. Rev. Lett. 111 (2013) 112503

### 格子QCD計算結果に基づく中性子星

![](_page_43_Figure_1.jpeg)

![](_page_44_Figure_0.jpeg)

original plot by A. Ukawa

京コンピュータ

### (11.28 PFlops, 80,000 CPUs x 8 = 640,000 cores)

![](_page_45_Picture_2.jpeg)

京コンピュータ

### (11.28 PFlops, 80,000 CPUs x 8 = 640,000 cores)

![](_page_46_Picture_2.jpeg)

# <u>Plan of this Talk</u>

- 1. 中性子星の基礎
- 2. 中性子星の質量
- 3. 中性子星の冷却
- 4. 中性子星の磁場
- 5. 格子ゲージ理論と中性子星
- 6. まとめと展望

![](_page_48_Picture_0.jpeg)

![](_page_48_Picture_1.jpeg)

# 冷却原子を用いた 中性子星の実験室シミュレーション?

![](_page_49_Figure_1.jpeg)

- ハドロン相とクォーク相のクロスオーバー
   ⇔ 冷却 ボース原子-冷却フェルミ原子混合気体 Maeda, Baym & Hatsuda, Phys. Rev. Lett. 103 (2009) 085301
- π中間子凝縮 ⇔ 冷却双極子原子(分子)気体
   Meada, Baym & Hatsuda, Phys. Rev. A 87 (2013) 021604(R)